Reactions of the Chloro(diisopropylamino)phosphanylium Cation with Unsaturated Alcohols

Tatsuji Kasaka, ${ }^{a}$ Ayao Matsumura, ${ }^{a}$ Makoto Kyoda, ${ }^{a}$ Tetsuya Fujimoto, ${ }^{*, a}$ Kazuchika Ohta, ${ }^{a}$ Iwao Yamamoto ${ }^{*, a}$ and Akikazu Kakehi ${ }^{\text {b }}$
${ }^{a}$ Department of Functional Polymer Science, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386, Japan
${ }^{b}$ Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, Wakasato, Nagano 300, Japan

The chloro(diisopropylamino) phosphanylium cation $\left[\left(\operatorname{Pr}_{2}{ }_{2} \mathrm{~N}\right)(\mathrm{Cl}) \mathrm{P}\right]^{+}\left[\mathrm{AlCl}_{4}\right]^{-} 1$ reacts with prop-2ynyl alcohols 2a-d to give prop-2-ynyl aminophosphonic chlorides 3a-d in good yield. Using cinnamyl alcohol and benzyl alcohol instead of $\mathbf{2 a - d}$, the reactions of cation 1 afforded the corresponding aminophosphonic chlorides. In the reaction of cation 1 with ethanol, however, no aminophosphonic chloride 8 could be isolated. The yields of these reactions were better when two equivalents of cation 1 were used. The reaction mechanisms are also discussed.

Phosphanylium cations are isoelectronic with singlet state carbenes and silylenes, having a reactive phosphorus group with a lone pair of electrons and a vacant 3 p orbital, and act as strong Lewis acids. ${ }^{1.2}$ Furthermore, they react with unsaturated organic molecules to afford various phosphorus-containing heterocycles which are well documented, ${ }^{3}$ however references regarding the reaction of phosphanylium cations with unsaturated compounds having a hetero atom are few in number. ${ }^{4}$ In the present paper, the reactions of chloro(diisopropylamino)phosphanylium cations with compounds having two active sites such as prop-2-ynyl alcohols and allyl alcohols are described.

Results and Discussion

4-Phenylbut-3-yn-2-ol 2a reacted with 2 equiv. of chloro(diisopropylamino)phosphanylium cation at $-78^{\circ} \mathrm{C}$ over 1 h to give N, N-diisopropyl- P-(4-phenylbut-3-yn-2-yl)phosphonamidic chloride 3 a in 61% yield as a diastereoisomeric mixture which was separated by column chromatography on silica gel. The structure of each diastereoisomer, established on the basis of spectral evidence and the results of elemental analysis, was confirmed by X-ray crystallography (Fig. 1 and Experimental section). When equimolar amounts of phosphanylium cation were used in the reaction with alcohol $\mathbf{2 a}$, the yield of phosphonamidic chloride 3a was poor (30%; entry 1 in Table 1).

It is well known that prop-2-ynyl alcohols react with phosphorus halides to form alk-2-ynyl trivalent phosphorus
esters which isomerize to allenyloxo- λ^{5}-phosphanes via a concerted $[2,3]$ sigmatropic rearrangement. ${ }^{5}$ In the present study, however, these allenyl phosphorus compounds were not obtained, except in the reaction with 1,1,3-triphenylprop-2-ynol 2e (vide infra).

The reaction of phosphanylium cation 1 with 1,3-diphenyl-prop-2-ynol 2b yielded two major products (43 and 45%, respectively; entry 4). One product was alkyne compound $\mathbf{3 b}$ (yield 45%), which showed an alkyne band at $1950 \mathrm{~cm}^{-1}$ in its IR spectrum. The mass spectrum of the other product $\mathbf{4 b}$ showed a molecular ion peak at $m / z 410\left(\mathrm{M}^{+}\right)$and $412(\mathrm{M}+2)$. Furthermore, the IR spectrum showed an alkene band at 1630 cm^{-1} and no peak was observed at $1950 \mathrm{~cm}^{-1}$. NMR spectroscopy and elemental analysis suggested that this product was $\quad N, N$-diisopropyl- P-(2-chloro-1,3-diphenylprop-2-enylphosphonamidic chloride $\mathbf{4 b}$. In this case a stoichiometric reaction of phosphanylium cation 1 and alcohol $\mathbf{2 b}$ also resulted in a poor yield of phosphonamidic chloride $\mathbf{4 b}$ (entry 3).

As shown in Table 1, the phosphanylium salt 1 provided the corresponding aminophosphonic chloride from the reactions of various prop-2-ynyl alcohols under similar conditions. However, the reaction of alcohol 2 e with 2 equiv. of phosphanylium

3a-d 4b
Product (yield, \%)
3a (30)

$$
\begin{aligned}
& 5 \mathrm{a}(50) \\
& 3 \mathrm{a}(61)^{a}
\end{aligned}
$$

4b (6)
$\mathbf{3 b}(45),{ }^{b} \mathbf{4 b}(43)$
3c (87)
3d (88)

[^0]cation 1 gave allenylaminophosphonic chloride 5 in 93% yield. The product 5 showed an allenic stretching band at $1910 \mathrm{~cm}^{-1}$ in its IR spectrum and the ${ }^{13} \mathrm{C}$ NMR spectrum showed resonances for allenic carbons at $\delta 103.3,110.6$ and 212.8 . The reaction of phosphanylium cation 1 with cinnamyl alcohol and benzyl alcohol yielded the corresponding aminophosphonic chlorides 6 and 7 in 34 and 41% yield, respectively. Furthermore, the cation 1 reacted with cinnamyl methyl ether to give

Reagents: i, $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathrm{ii}, \mathrm{H}_{2} \mathrm{O}$
the phosphonic chloride 6 in 37% yield, but the reaction with ethanol did not yield compound 8 .

Based on the above results, a plausible mechanism can be postulated to explain the formation of aminophosphonic chlorides $\mathbf{3 a - d}, 7$ and 9 (Scheme 1).

In the first stage, the nucleophilic attack of the oxygen onto the phosphanylium cation forms the adduct 9 , which is converted by chloride ion and/or tetrachloroaluminate into phosphane 10 along with an elimination of hydrogen chloride or methyl chloride. To clarify the formation of alkyl chloride, we

Fig. 1 Crystal structures of $(a)\left(S^{*}, S^{*}\right)$-3a and $(b)\left(S^{*}, R^{*}\right)$-3a

Scheme 1 Reaction mechanism of chloro(diisopropylamino)phosphanylium cation with unsaturated alcohol
attempted the reaction of cation 1 with dibenzyl ether, which under the same conditions gave the expected aminophosphonic chloride 7 in 44% yield, whilst benzyl chloride 15 was detected by gas chromatography.

In the second step, the intermediate 10 attacks a further molecule of phosphanylium cation to form adduct 11 , which is followed by carbon-oxygen bond cleavage resulting in a stable carbocation 12 and diphosphane 13. Because of the high reactivity of the phosphanylium cation, an intramolecular rearrangement of the intermediate $\mathbf{1 0}$ could not occur. Furthermore, the fact that the reactions required 2 equiv. of phosphanylium cations is explained by the above mechanism. In the reaction of cation 1 with ethanol, a stable carbocation cannot be generated. Furthermore, the reaction of 2 equiv. of cation 1 with 1-phenylprop-2-enol 16, which would give the same carbocation as that in the reaction with cinnamyl alcohol and cinnamyl methyl ether, gave aminophosphonic chloride 6 in 55% yield.

An alternative mechanism might be an Arbuzov route via intermediate 10 . This route, however, can be excluded since it

would require only an equimolar amount of the phosphanylium cation.

The carbocation 12 can then accept nucleophilic attack by the trivalent phosphorus atom to give intermediate 13. In the case of the reaction of 1,1,3-triphenylprop-2-ynol, the less steric hindered carbon would be attacked to form allenylaminophosphonic chloride 5. Finally, the aminophosphonic chloride is formed by the addition of water.
Reactions of cation 1 with 1-phenylpenta-1,4-dien-3-ol 17, penta-1,4-dien-3-ol 18 and hexa-2,4-dienol 19 did not give Nazarov products but dienylaminophosphonic chlorides 20-22 in 55,33 and 65% yield, respectively. These reactions would also proceed via stable pentadienyl cations. Furthermore, the reaction of alcohol 17 with chlorodiphenylphosphane in the presence of aluminium chloride gave oxo- λ^{5}-phosphanes 23 and 24 in 58 and 22% yield, respectively.

Experimental

Melting points were taken with a Yanagimoto micro melting point apparatus. IR spectra were obtained on a JASCO A-100 spectrometer. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on JEOL FX-90 and JEOL $\alpha-400$ spectrometers. All chemical shifts are reported in (δ) ppm from tetramethylsilane and coupling constants are given in Hz . Mass spectra were taken with a Hitachi M-80B spectrometer. Analytical gas chromatography was performed on a Shimadzu GC-8A gas chromatograph equipped with a flame ionization detector. The column used was an OV-7 stainless steel column: the injector temperature was $100^{\circ} \mathrm{C}$, the column temperature was $80^{\circ} \mathrm{C}$, and hydrogen gas and air $0.5 \mathrm{~kg} \mathrm{~cm}^{-2}$ and nitrogen gas 0.25 kg cm^{-2} were used. Retention times and peak integrals were obtained from a Shimadzu C-R6A recorder.

Synthesis of N,N-Diisopropyl-P-(4-phenylbut-3-yn-2-yl)phosphonamidic Chloride 3a.-A solution of dichloro(diisopropylamino) phosphine ($2.76 \mathrm{~g}, 13.68 \mathrm{mmol}$) in anhydrous dichloromethane ($15 \mathrm{~cm}^{3}$) was added to a stirred solution of aluminium chloride (anhydrous; $1.82 \mathrm{~g}, 13.68 \mathrm{mmol}$) in anhydrous dichloromethane ($15 \mathrm{~cm}^{3}$) under nitrogen at $-78^{\circ} \mathrm{C}$. The mixture was allowed to warm to room temperature over 1 h and then cooled to $-78{ }^{\circ} \mathrm{C}$ again. A solution of 4-phenylbut-3-yn-2ol ($1.00 \mathrm{~g}, 6.84 \mathrm{mmol}$) in anhydrous dichloromethane $\left(15 \mathrm{~cm}^{3}\right)$ was added to the mixture which was then stirred for an additional 1 h at $-78^{\circ} \mathrm{C}$. The mixture was allowed to warm to room temperature and then quenched with water $\left(20 \mathrm{~cm}^{3}\right)$. The mixture was extracted with dichloromethane $\left(30 \mathrm{~cm}^{3} \times 3\right)$ and the extract washed with brine ($30 \mathrm{~cm}^{3}$) and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by chromatography on silica gel eluting with EtOAc-hexane $(0: 1-1: 3)$ to give a solid which was recrystallized from hexane to give the title compounds (S^{*}, S^{*})and (S^{*}, R^{*})-3a as colourless crystalline solids in $59 \%(1.25 \mathrm{~g}$, $4.01 \mathrm{mmol})$ and $2 \%(0.05 \mathrm{~g}, 0.16 \mathrm{mmol})$ yields, respectively.
(S^{*}, S^{*})-3a: M.p. 104-105 ${ }^{\circ} \mathrm{C}$ (Found: C, 61.6; H, 7.4; N, 4.4. $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{ClNOP}$ requires $\left.\mathrm{C}, 61.6 ; \mathrm{H}, 7.4 ; \mathrm{N}, 4.5 \%\right)$; $v_{\max }(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 2970,2930,2855(\mathrm{CH}), 2210(\mathrm{C} \equiv \mathrm{C}), 1600,1495,1440$, $1400,1360\left(\mathrm{CH}_{3}\right), 750,720$ and $680[\mathrm{CH}(\mathrm{Ph})] ; \delta_{\mathrm{H}}(90 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.31\left(6 \mathrm{H}, \mathrm{d}, J 4.4, \mathrm{NCCH}_{3}\right), 1.38(6 \mathrm{H}, \mathrm{d}, J 4.4$, $\left.\mathrm{NCCH}_{3}\right), 3.15-3.87(3 \mathrm{H}, \mathrm{m}, \mathrm{NCH}$ and CH$)$ and $7.24-7.49(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(22.63 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}} 4.9, \mathrm{PCCH}_{3}\right)$, $21.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}} 2.0, \mathrm{NCCH}_{3}\right), 22.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}} 3.9, \mathrm{NCCH}_{3}\right), 35.5(\mathrm{~d}$, $\left.{ }^{1} J_{\mathrm{PC}} 120.6, \mathrm{PCH}\right), 48.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}} 2.4, \mathrm{NCH}\right), 85.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}} 11.7\right.$, $C \equiv \mathrm{C}), 123.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}} 4.4, \mathrm{C} \equiv C\right)$ and 128.3-131.8 (ArCs); $m / z 296$ $\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right)$.
(S^{*}, R^{*})-3a: M.p. 69-70 ${ }^{\circ} \mathrm{C}$ (Found: C, 61.6; H, 7.4; N, 4.4. $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{ClNOP}$ requires $\mathrm{C}, 61.6 ; \mathrm{H}, 7.4 ; \mathrm{N}, 4.5 \%$); $v_{\text {max }}(\mathrm{KBr})$ / $\mathrm{cm}^{-1} 2950,2940,2870(\mathrm{CH}), 2220(\mathrm{C} \equiv \mathrm{C}), 1590,1480,1440,1400$, $1360\left(\mathrm{CH}_{3}\right), 745,720$ and $680[\mathrm{CH}(\mathrm{Ph})] ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.38\left(12 \mathrm{H}, \mathrm{d}, J 5.4, \mathrm{NCCH}_{3}\right), 1.68(3 \mathrm{H}, \mathrm{dd}, J 7.0,20.78$, $\left.\mathrm{PCCH}_{3}\right), 3.32-3.71(3 \mathrm{H}, \mathrm{m}, \mathrm{NCH}$ and CH$)$ and $7.25-7.40(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(22.63 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 15.0\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{PC}} 4.4, \mathrm{PCCH}_{3}\right)$, $21.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}} 2.0, \mathrm{NCCH}_{3}\right), 22.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}} 3.9, \mathrm{NCCH}_{3}\right), 34.0(\mathrm{~d}$, $\left.{ }^{1} J_{\mathrm{PC}} 121.1, \mathrm{PCH}\right), 47.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}} 2.9, \mathrm{NCH}\right), 85.5$ (d, ${ }^{3} J_{\mathrm{PC}} 12.7$, $C \equiv \mathrm{C}$), 123.0 ($\mathrm{d},{ }^{2} J_{\mathrm{PC}} 4.9, \mathrm{C} \equiv C$) and 128.4-131.7 (ArCs).

N,N-Diisopropyl-P-(1,3-diphenylprop-2-yn-1-yl)phosphonamidic Chloride 3b and N,N-Diisopropyl-P-(2-chloro-1,3-di-phenylprop-2-enyl)phosphonamidic Chloride $\mathbf{4 b}$.-In the same way, dichloro(diisopropylamino) phosphine ($1.94 \mathrm{~g}, 9.60 \mathrm{mmol}$), aluminium chloride (anhydrous; $1.28 \mathrm{~g}, 9.60 \mathrm{mmol}$) and $1,3-$ diphenylprop-2-ynol ($1.00 \mathrm{~g}, 4.80 \mathrm{mmol}$) gave the title compounds $\mathbf{3 b}(0.81 \mathrm{~g}, 2.17 \mathrm{mmol}, 45 \%)$ and $\mathbf{4 b}(0.85 \mathrm{~g}, 2.07$ $\mathrm{mmol}, 43 \%$), respectively. 3b As a colourless crystalline solid,
m.p. 109-110 ${ }^{\circ} \mathrm{C}$ (Found: C, 67.6; H, 6.9; N, 3.6. $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{ClNOP}$ requires C, $67.5 ; \mathrm{H}, 6.7 ; \mathrm{N}, 3.75 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3070,3040$ $[\mathrm{CH}(\mathrm{Ph})], 2970,2945,2920(\mathrm{CH}), 1950(\mathrm{C} \equiv \mathrm{C}), 1600,1495,1450$, 1385, $1370\left(\mathrm{CH}_{3}\right), 1240(\mathrm{P}=\mathrm{O}), 755$ and $690[\mathrm{CH}(\mathrm{Ph})] ; \delta_{\mathrm{H}}(90$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.06\left(6 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{NCCH}_{3}\right), 1.32(6 \mathrm{H}, \mathrm{d}, J 7.0$, NCCH_{3}), $3.20-4.00(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}), 4.57(0.64 \mathrm{H}, \mathrm{d}, J 22.6$, PCH), $4.69(0.36 \mathrm{H}, \mathrm{d}, J 23.7, \mathrm{PCH})$ and $7.17-7.72$ ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $\delta_{\mathrm{C}}\left(22.63 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 21.7\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PC}} 2.5, \mathrm{NCCH}_{3}\right), 22.0(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{PC}} 2.0, \mathrm{NCCH}_{3}\right), 22.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}} 3.9, \mathrm{NCCH}_{3}\right), 22.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}} 3.4\right.$, $\left.\mathrm{NCCH}_{3}\right), 46.8\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PC}} 113.3, \mathrm{PCH}\right), 48.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}} 113.8, \mathrm{PCH}\right)$, $47.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}} 2.4, \mathrm{NCH}\right), 48.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}} 2.4, \mathrm{NCH}\right), 84.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}\right.$ 13.2, $C \equiv \mathrm{C}$), $123.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}} 4.9, \mathrm{C} \equiv C\right.$) and $128.1-131.9$ (ArCs); $m / z 373\left(\mathrm{M}^{+}\right)$.

4b As a colourless crystalline solid, m.p. ${ }^{185-186}{ }^{\circ} \mathrm{C}$ (Found: C, 61.5; H, 6.4; N, 3.3. $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{Cl}_{2}$ NOP requires C, 61.7; H, 6.4; $\mathrm{N}, 3.1 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3030[\mathrm{CH}(\mathrm{Ph})], 2975,2925,2875$ $(\mathrm{CH}), 1630(\mathrm{C}=\mathrm{C}), 1600,1495,1450,1400,1370\left(\mathrm{CH}_{3}\right), 1235$ $(\mathrm{P}=\mathrm{O}), 750$ and $680[\mathrm{CH}(\mathrm{Ph})] ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.87(6 \mathrm{H}$, d, $\left.J 6.4, \mathrm{NCCH}_{3}\right), 1.35\left(6 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{NCCH}_{3}\right), 3.20-3.59(2 \mathrm{H}$, $\mathrm{m}, \mathrm{NCH}), 4.38(1 \mathrm{H}, \mathrm{d}, J 19.8, \mathrm{PhCH}=\mathrm{C})$ and $7.25-7.68(11 \mathrm{H}$, m, Ph and olefin Hs); $\delta_{\mathrm{C}}\left(22.63 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 21.8$ (d, ${ }^{3} J_{\mathrm{PC}}$ $2.0, \mathrm{NCCH}), 22.1$ ($\mathrm{d},{ }^{3} J_{\mathrm{PC}} 4.4, \mathrm{NCCH}$), 48.1 ($\mathrm{d},{ }^{2} J_{\mathrm{PC}} 2.4$, $\mathrm{NCH}), 62.2\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PC}} 112.8, \mathrm{PCH}\right)$ and 128.1-130.6 (ArCs); $m / z 410\left(\mathrm{M}^{+}\right)$.

N,N-Diisopropyl-P-(2-methyl-4-phenylbut-3-yn-2-yl)phos-

 phonamidic Chloride 3c.-In the same way, dichloro(diisopropylamino) phosphine ($2.52 \mathrm{~g}, 12.50 \mathrm{mmol}$), aluminium chloride (anhydrous; $1.67 \mathrm{~g}, 12.50 \mathrm{mmol}$) and 2-methyl-4-phenylbut-3-yn-2-ol ($1.00 \mathrm{~g}, 6.24 \mathrm{mmol}$) gave the title compound $3 \mathrm{c}(1.77 \mathrm{~g}, 5.43 \mathrm{mmol}, 87 \%)$ as a colourless crystalline solid, m.p. $69-70^{\circ} \mathrm{C}$ (Found: C, 62.4; H, 7.7; N, 4.5. $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{ClNOP}$ requires $\left.\mathrm{C}, 62.7 ; \mathrm{H}, 7.7 ; \mathrm{N}, 4.3 \%\right) ; v_{\max }(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 3070[\mathrm{CH}(\mathrm{Ph})], 2975,2940,2875(\mathrm{CH}), 1950(\mathrm{C} \equiv \mathrm{C}), 1740$, $1600,1490,1450,1400,1380,1365\left(\mathrm{CH}_{3}\right), 1240(\mathrm{P}=\mathrm{O}), 755,720$ and $680[\mathrm{CH}(\mathrm{Ph})] ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.29(6 \mathrm{H}, \mathrm{d}, J 6.6$, $\left.\mathrm{NCCH}_{3}\right), 1.33\left(6 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{NCCH}_{3}\right), 1.66(3 \mathrm{H}, \mathrm{d}, J 19$, $\left.\mathrm{PCCH}_{3}\right), 3.51-4.18(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH})$ and $7.33-7.73(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$; $\delta_{\mathrm{C}}\left(22.63 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 21.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}} 2.0, \mathrm{NCCH}\right), 22.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}\right.$ $3.9, \mathrm{NCCH}), 24.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}} 2.0, \mathrm{PCCH} 3\right), 26.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}} 2.0\right.$, $\left.\mathrm{PCCH}_{3}\right), 40.3\left[\mathrm{~d},{ }^{1} J_{\mathrm{PC}} 120.1, \mathrm{PC}\left(\mathrm{CH}_{3}\right)_{2}\right.$], $48.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}} 2.0\right.$, $\mathrm{NCH}), 83.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}} 10.7, C \equiv \mathrm{C}\right), 123.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}} 3.9, \mathrm{C} \equiv C\right)$ and 128.4-131.5 (ArCs); m/z $325\left(\mathrm{M}^{+}\right)$.
N, N-Diisopropyl-P-[1-(2-phenylethynyl)cyclohexyl]phos-

 phonamidic Chloride 3d.-In the same way, dichloro(diisopropylamino) phosphine ($2.52 \mathrm{~g}, 9.98 \mathrm{mmol}$), aluminium chloride (anhydrous; $1.33 \mathrm{~g}, 9.98 \mathrm{mmol}$) and 1-(2-phenylethynyl)cyclohexanol ($1.00 \mathrm{~g}, 4.99 \mathrm{mmol}$) gave the title compound 3d $(1.61 \mathrm{~g}, 4.40 \mathrm{mmol}, 88 \%$) as a colourless crystalline solid, m.p. $77-78{ }^{\circ} \mathrm{C}$ (Found: C, 65.8; H, 7.95; N, 3.9. $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{CNOP}$ requires $\mathrm{C}, 65.7 ; \mathrm{H}, 8.0 ; \mathrm{N}, 3.8 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3070$ [CH(Ph)], 2975, 2940, $2875(\mathrm{CH}), 1950(\mathrm{C} \equiv \mathrm{C}), 1740,1600,1490$, 1450, 1400, 1380, $1365\left(\mathrm{CH}_{3}\right), 1240(\mathrm{P}=\mathrm{O}), 755$ and 680 $[\mathrm{CH}(\mathrm{Ph})] ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.30\left(6 \mathrm{H}, \mathrm{d}, J 4.8, \mathrm{NCCH}_{3}\right)$, $1.37\left(6 \mathrm{H}, \mathrm{d}, J 4.8, \mathrm{NCCH}_{3}\right), 1.50-2.20\left(10 \mathrm{H}, \mathrm{m},-\left[\mathrm{CH}_{2}\right]_{5}{ }^{-}\right)$, 3.67-4.20 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}$) and 7.26-7.43 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $\delta_{\mathrm{C}}(22.63$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $22.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}} 2.0, \mathrm{NCCH}\right), 22.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}} 3.9\right.$, cyclohexyl-2C), 22.8 (d, ${ }^{3} J_{\mathrm{PC}} 3.4, \mathrm{NCCH}$), 23.0 (s , cyclohexyl4 C), 25.3 (d, ${ }^{3} J_{\mathrm{PC}} 2.0$, cyclohexyl-2C), 31.4 (d, ${ }^{2} J_{\mathrm{PC}} 3.4, \mathrm{PCC}$), 32.3 ($\left.\mathrm{d},{ }^{2} J_{\mathrm{PC}} 2.9, \mathrm{PCC}\right), 46.7$ (d, $\left.{ }^{1} J_{\mathrm{PC}} 121.1, \mathrm{PC}\right), 48.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}\right.$ $1.5, \mathrm{NCH}), 86.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}} 11.7, C \equiv \mathrm{C}\right), 123.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}} 3.9, \mathrm{C} \equiv C\right)$ and 128.3-131.5 (ArCs); $m / z 350\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right)$.
N,N-Diisopropyl-P-(1,3,3-triphenylpropa-1,2-dienyl)phos-

 phonamidic Chloride 5. In the same way, dichloro(diisopropylamino)phosphine ($1.42 \mathrm{~g}, 7.04 \mathrm{mmol}$), aluminium chloride (anhydrous; $0.94 \mathrm{~g}, 7.04 \mathrm{mmol}$), and 1,1,3-triphenylprop-2-ynol$(1.00 \mathrm{~g}, 3.52 \mathrm{mmol})$ gave the title compound $5(1.48 \mathrm{~g}, 3.29$ $\mathrm{mmol}, 93 \%$) as a colourless crystalline solid, m.p. $185-186^{\circ} \mathrm{C}$ (Found: C, 72.2; H, 6.6; N, 3.2. $\mathrm{C}_{27} \mathrm{H}_{29}$ CINOP requires C, 72.1; $\mathrm{H}, 6.5 ; \mathrm{N}, 3.1 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3050[\mathrm{CH}(\mathrm{Ph})], 3025,2975$, 2940, $2875(\mathrm{CH}), 1910,1600,1490,1440,1400,1380,1365$ $\left(\mathrm{CH}_{3}\right), 1240(\mathrm{P}=\mathrm{O}), 755$ and $680[\mathrm{CH}(\mathrm{Ph})] ; \delta_{\mathrm{H}}(90 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.97\left(6 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{NCCH}_{3}\right), 1.27(6 \mathrm{H}, \mathrm{d}, J 6.7$, $\left.\mathrm{NCCH}_{3}\right), 3.16-3.60(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH})$ and $7.35-7.76$ ($15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $\delta_{\mathrm{C}}\left(22.63 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 21.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}} 2.9, \mathrm{NCCH}\right), 22.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}\right.$ $4.4, \mathrm{NCCH}), 47.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}} 4.0, \mathrm{NCH}\right), 107.6\left[\mathrm{~d},{ }^{1} J_{\mathrm{PC}} 164.5\right.$, $\mathrm{PC}(\mathrm{Ph})], 128.4-128.8(\mathrm{ArCs})$ and $212.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}} 4.0\right.$, allenic-C); $m / z 449\left(\mathrm{M}^{+}\right)$.

N,N-Diisopropyl-P-(3-phenylprop-2-enyl)phosphonamidic Chloride 6.-In the same way, dichloro(diisopropylamino)phosphine ($3.01 \mathrm{~g}, 14.9 \mathrm{mmol}$), aluminium chloride (anhydrous; $1.99 \mathrm{~g}, 14.9 \mathrm{mmol}$), and cinnamyl alcohol ($1.00 \mathrm{~g}, 7.45 \mathrm{mmol}$) gave the title compound $6(0.76 \mathrm{~g}, 2.5 \mathrm{mmol}, 34 \%)$ as a colourless crystalline solid, m.p. $86-87^{\circ} \mathrm{C}$ (Found: C, $60.1 ; \mathrm{H}$, 7.7; $\mathrm{N}, 4.8 . \mathrm{C}_{15} \mathrm{H}_{23} \mathrm{ClNOP}$ requires $\mathrm{C}, 60.1 ; \mathrm{H}, 7.7 ; \mathrm{N}, 4.7 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3090,3040[\mathrm{CH}(\mathrm{Ph}$ or olefin $)], 3000,2940$, $2870,1600,1500,1450,1245(\mathrm{P}=\mathrm{O}), 1000,970[\mathrm{CH}(\mathrm{CH}=\mathrm{CH})]$, 730 and $695[\mathrm{CH}(\mathrm{Ph})] ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right] 1.27(6 \mathrm{H}, \mathrm{d}, J$ $6.8, \mathrm{NCCH}_{3}$), $1.37\left(6 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{NCCH}_{3}\right), 3.01-3.68(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{PCH}_{2}, \mathrm{NCH}\right), 6.08-6.72(2 \mathrm{H}, \mathrm{m}, \mathrm{PCCH}, \mathrm{PhCH})$ and $7.27-7.33$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{c}}\left(22.63 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 21.5\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PC}} 2.9\right.$, $\mathrm{NCCH}), 22.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}} 3.9, \mathrm{NCCH}\right), 41.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}} 116, \mathrm{PCH}_{2}\right)$, $47.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}} 3.4, \mathrm{NCH}\right)$ and 118.1-136.5 (ArCs); $m / z 299\left(\mathrm{M}^{+}\right)$.

Compound 6 was also obtained from the reactions of 3-phenyl-1-methoxyprop-2-enol ($1.00 \mathrm{~g}, 6.75 \mathrm{mmol}$) with dichloro(diisopropylamino) phosphine ($2.73 \mathrm{~g}, 13.5 \mathrm{mmol}$) and aluminium chloride (anhydrous; $1.80 \mathrm{~g}, 13.5 \mathrm{mmol}$) and 1-phenylprop-2-enol ($1.00 \mathrm{~g}, 7.45 \mathrm{mmol}$) with dichloro(diisopropylamino)phosphine ($2.76 \mathrm{~g}, 13.68 \mathrm{mmol}$) and aluminium chloride (anhydrous; $1.82 \mathrm{~g}, 13.68 \mathrm{mmol}$) in $37 \%(0.74 \mathrm{~g}, 2.47$ $\mathrm{mmol})$ and $55 \%(1.22 \mathrm{~g}, 4.07 \mathrm{mmol})$ yield, respectively.
N, N-Diisopropyl-P-(5-phenylpenta-2,4-dienyl)phosphonamidic Chloride 20.-In the same way, dichloro(diisopropylamino) phosphine ($1.57 \mathrm{~g}, 7.74 \mathrm{mmol}$), aluminium chloride (anhydrous; $1.04 \mathrm{~g}, 7.74 \mathrm{mmol}$) and 1-phenylpenta-1,4-dien-3ol $(0.62 \mathrm{~g}, 3.87 \mathrm{mmol})$ gave the title compound $20(0.70 \mathrm{~g}, 2.15$ $\mathrm{mmol}, 56 \%$) as a colourless crystalline solid, m.p. $104-105^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 62.9 ; \mathrm{H}, 7.8 ; \mathrm{N}, 4.2 . \mathrm{C}_{17} \mathrm{H}_{25} \mathrm{ClNOP}$ requires $\mathrm{C}, 62.7$; $\mathrm{H}, 7.7 ; \mathrm{N}, 4.3 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2975,1250(\mathrm{P}=\mathrm{O}), 1180$, 1160, 1025, 750 and $680 ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.32(12 \mathrm{H}, \mathrm{dd}, J$ $\left.6.8, \mathrm{CH}_{3}\right), 2.94-3.67\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}, \mathrm{CH}_{2}\right), 5.84(1 \mathrm{H}, \mathrm{m}, J 7.7)$, 6.41-6.74 ($3 \mathrm{H}, \mathrm{m}$) and $7.40-7.23(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(22.63 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 22.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}} 31.1, \mathrm{NCCH}_{3}\right), 22.2\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PC}} 32.4, \mathrm{NCCH}_{3}\right)$, 41.4 (d, $\left.{ }^{1} J_{\mathrm{PC}} 116.0, \mathrm{PCC}\right), 47.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}} 3.1, \mathrm{~N} C \mathrm{CH}_{3}\right.$), 121.7137.1 [ArCs and $-\mathrm{CH}_{2}=\mathrm{CH}-\left(121.7, J_{\mathrm{PC}} 13.4\right)$], 126.4, 126.5, 127.7, 127.9, 128.1, 128.6, 132.9 ($J_{\mathrm{PC}} 5.5$), 136.25, 137.0 and 137.1); $m / z 325\left(\mathrm{M}^{+}\right)$.
N, N-Diisopropyl-P-penta-2,4-dienylphosphonamidic Chloride 21.-In the same way, dichloro(diisopropylamino)phosphine $(2.40 \mathrm{~g}, 11.89 \mathrm{mmol}$), aluminium chloride (anhydrous; 1.59 g , $11.89 \mathrm{mmol})$, and penta-1,4-dien-3-ol ($0.50 \mathrm{~g}, 5.94 \mathrm{mmol}$) gave the title compound $21(0.49 \mathrm{~g}, 1.96 \mathrm{mmol}, 33 \%)$ as a pure yellow syrup; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3100\left(=\mathrm{CH}_{2}\right), 3000,2950(\mathrm{CH}), 2900$, 1600, 1460, $1410\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 1370\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1250(\mathrm{P}=\mathrm{O})$, $1210,1180,1160,1130\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1000,900,810$ and 750 ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.25\left(6 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CH}_{3}\right), 1.35(6 \mathrm{H}, \mathrm{d}$, $\left.J 6.8, \mathrm{CH}_{3}\right), 3.02\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.46\left(2 \mathrm{H}, \mathrm{m}, J 6.8, \mathrm{CH}_{3}\right)$, $5.10\left(1 \mathrm{H}, \mathrm{d}, J 10.5, \mathrm{CH}_{2}=\mathrm{CHCH}=\mathrm{CH}\right), 5.20(1 \mathrm{H}, \mathrm{d}, J 16.1$, $\left.\mathrm{CH}_{2}=\mathrm{CHCH}=\mathrm{CH}\right), 5.75-5.65(1 \mathrm{H}, J 7.6, \mathrm{t}, J 7.6, \mathrm{~d}, J 15.0$, d, $\left.\mathrm{CH}_{2}=\mathrm{CHCH}=\mathrm{CH}\right)$ and 6.38-6.20 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CHCH}=\mathrm{CH}\right)$;
$\delta_{\mathrm{C}}\left(22.63 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 22.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}} 30.3, \mathrm{CH}_{3}\right), 22.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}\right.$ $\left.29.3, \mathrm{CH}_{3}\right), 41.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}} 116.2, \mathrm{PCC}\right), 47.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}} 2.9\right.$, $\left.\mathrm{NCCH}_{3}\right), 117.5\left(\mathrm{~d},{ }^{5} J_{\mathrm{PC}} 4.9, \mathrm{PCC}=\mathrm{CC}=C\right), 121.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}} 13.2\right.$, $\mathrm{PCC}=\mathrm{C})$, $136.1\left(\mathrm{~d},{ }^{4} J_{\mathrm{PC}} 5.4, \mathrm{PCC}=\mathrm{CC}=\mathrm{C}\right)$ and $137.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}\right.$ 17.1, $\mathrm{PCC}=\mathrm{CC}=\mathrm{C}$); $m / z 249\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 249.1060$. $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{ClNOP}$ requires $M^{+}, 249.1048$).

N,N-Diisopropyl-P-hexa-2,4-dienylphosphonamidic Chloride 22.-In the same way, dichloro(diisopropylamino)phosphine $(3.02 \mathrm{~g}, 10.0 \mathrm{mmol}$), aluminium chloride (anhydrous; 1.33 g , $10.0 \mathrm{mmol})$ and hexa-2,4-dienol ($0.49 \mathrm{~g}, 5.00 \mathrm{mmol}$) gave the title compound $22(0.90 \mathrm{~g}, 3.25 \mathrm{mmol}, 65 \%)$ as a colourless syrup; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2970,2940,1660(\mathrm{CH}=\mathrm{CH}), 1450,1410$, $1370\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1250 \quad(\mathrm{P}=\mathrm{O}), 1200,1180,1160,1110$ $\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 990,920,880,820$ and $730 ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.10\left(6 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{NCCH}_{3}\right), 1.20\left(6 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{NCCH}_{3}\right), 1.65-$ $1.54\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 2.74\left(1 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{CH}_{2}\right), 2.98(1 \mathrm{H}, \mathrm{d}, J 7.4$, $\left.\mathrm{CH}_{2}\right), 3.11-3.50(2 \mathrm{H}, \mathrm{m}, \mathrm{NCHCH} 3)$ and $5.41-5.99(4 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}=\mathrm{CH}) ; \quad \delta_{\mathrm{C}}\left(22.63 \mathrm{MHz} ; \quad \mathrm{CDCl}_{3}\right) \quad 22.2 \quad\left(\mathrm{~d}, \quad{ }^{3} \mathrm{~J}_{\mathrm{PC}} \quad 29.1\right.$, $\left.\mathrm{NCCH}_{3}\right), 22.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}} 30.2, \mathrm{NCCH}_{3}\right), 41.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}} 115.9\right.$, $\mathrm{PCC}=\mathrm{C}), 47.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}} 3.3, \mathrm{NCCH}_{3}\right), 118.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}\right.$ 13.2, $\mathrm{PCC}=\mathrm{C}), 129.8\left(\mathrm{~d},{ }^{5} J_{\mathrm{PC}} 4.9, \mathrm{PCC}=\mathrm{CC}=C\right), 131.0\left(\mathrm{~d},{ }^{4} J_{\mathrm{PC}} 5.0\right.$, $\mathrm{PCC}=\mathrm{CC}=\mathrm{C}$) and $136.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}} 17.0, \mathrm{PCC}=C\right) ; m / z 263\left(\mathrm{M}^{+}\right)$ (Found: $\mathrm{M}^{+}, \quad 263.1241 . \quad \mathrm{C}_{12} \mathrm{H}_{23} \mathrm{ClNOP}$ requires M^{+}, 263.1205).

Oxodiphenyl(5-phenylpenta-2,4-dienyl)- λ^{5}-phosphane 23 and Oxodiphenyl(1-phenylpenta-1,4-dien-3-yl)- λ^{5}-phosphane 24.In the same way, chlorodiphenylphosphine ($1.33 \mathrm{~g}, 6.0 \mathrm{mmol}$), aluminium chloride (anhydrous; $0.8 \mathrm{~g}, 6.0 \mathrm{mmol}$) and 1-phenylpenta-1,4-dien-3-ol ($0.48 \mathrm{~g}, 3.0 \mathrm{mmol}$) gave the title compounds $23(0.60 \mathrm{~g}, 1.74 \mathrm{mmol}, 58 \%)$ and $24(0.23 \mathrm{~g}, 0.66$ $\mathrm{mmol}, 22 \%$), respectively. Compound 23 as a colourless crystalline solid, m.p. $217^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 79.85$; $\mathrm{H}, 6.2$. $\mathrm{C}_{23} \mathrm{H}_{21}$ OP requires C, $80.2 ; \mathrm{H}, 6.15 \%$) ; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3030$, $1590,1480,1440,1300,1180,1100,980,840,740,720$ and 680 ; $\delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.22\left(2 \mathrm{H}, \mathrm{dd}, J 7.5,7.3 \mathrm{CH}_{2}\right), 6.47-6.56$ $(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH})$ and $7.24-7.87(15 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}(22.63$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 35.6\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PC}} 68.4, \mathrm{CH}_{2}\right)$ and $122.0-136.4$ [ArCs and $\mathrm{CH}=\mathrm{CH}(122.0,122.4,126.4,127.5,128.2,128.4,128.4$, $128.6,128.9,130.9,131.3,131.8,131.9,132.1,135.9,136.4)]$; $m / z 344\left(\mathrm{M}^{+}\right)$.

Compound 24 as a colourless crystalline solid, m.p. 166$173{ }^{\circ} \mathrm{C}$; $\nu_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3030,1590,1480,1440,1300,1160$, $1100,1000.900,810$ and $680 ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.13-4.32$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$), 4.89-5.08 ($2 \mathrm{H}, \mathrm{m},=\mathrm{CH}_{2}$), 6.02-6.13 (3 H, m, $\left.\mathrm{CHCH}, \mathrm{CH}=\mathrm{CH}_{2}\right)$ and $7.13-7.95(15 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}(22.63$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 52.4\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PC}} 65.3, \mathrm{CH}\right)$ and $117.0-136.6$ [ArCs and $\mathrm{CH}=C \mathrm{H}, \mathrm{CH}=\mathrm{CH}(117.0,127.1,127.1,128.2,128.5,128.6$, $128.7,128.9,129.7,129.9,131.0,131.5,131.8,132.1,135.1$, 135.6, 136.5. 136.6)]; $m / z 344\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 344.1350$. $\mathrm{C}_{23} \mathrm{H}_{21}$ NOP requires $M^{+}, 344.1329$).

Synthesis of P-Benzyl-N,N-diisopropylphosphonamidic Chlor-

 ide 7.-A dichloro(diisopropylamino)phosphine ($4.33 \mathrm{~g}, 21.40$ mmol) solution in anhydrous dichloromethane ($15 \mathrm{~cm}^{3}$) was added to a stirred solution of aluminium chloride (anhydrous; $2.85 \mathrm{~g}, 21.40 \mathrm{mmol}$) in anhydrous dichloromethane ($15 \mathrm{~cm}^{3}$) under nitrogen at $--78^{\circ} \mathrm{C}$. The mixture was allowed to warm to room temperature over 1 h . Then a solution of benzyl alcohol $(1.16 \mathrm{~g}, 10.7 \mathrm{mmol})$ in anhydrous dichloromethane ($15 \mathrm{~cm}^{3}$) was added and the mixture stirred for an additional 1 h at room temperature. The mixture was then quenched with water (20 cm^{3}) and extracted with dichloromethane ($30 \mathrm{~cm}^{3} \times 3$). The combined organic extracts were washed with brine $\left(30 \mathrm{~cm}^{3}\right)$ and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Purification by chromatography on silica gel eluting with EtOAc-hexane ($0: 1-1: 3$) and removal of solvent under reduced pressure gave a solid which wasrecrystallized from hexane to give the title compound 7 as a colourless crystalline solid in $41 \%(1.21 \mathrm{~g}, 4.42 \mathrm{mmol})$ yield.

Compound 7: m.p. $69-70^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3040[\mathrm{CH}-$ $(\mathrm{Ph})], 2940,1600,1585,1500,1450,1410,1370,1245(\mathrm{P}=\mathrm{O})$, $1020,990,770$ and $695[\mathrm{CH}(\mathrm{Ph})] ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.04$ $\left(6 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{NCCH}_{3}\right), 1.34\left(6 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{NCCH}_{3}\right), 3.24-3.69$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2}, \mathrm{NCH}\right)$ and $7.24-7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(22.63$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $21.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}} 2.4, \mathrm{NCCH}_{3}\right), 22.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}} 4.4\right.$, $\left.\mathrm{NCCH}_{3}\right), 44.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}} 114.3, \mathrm{PCH}_{2}\right), 47.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}} 3.4, \mathrm{ArC}-1 \mathrm{C}\right)$ and 127.4-131.3 (ArCs) (Found: $\mathrm{M}^{+}, 273.1055 . \mathrm{C}_{16} \mathrm{H}_{23} \mathrm{CINOP}$ requires $M^{+}, 273.1048$). Compound 7 was also obtained from the reaction of dibenzyl ether ($1.00 \mathrm{~g}, 5.04 \mathrm{mmol}$) with dichloro(diisopropylamino)phosphine ($2.04 \mathrm{~g}, 10.08 \mathrm{mmol}$), aluminium chloride (anhydrous; $1.35 \mathrm{~g}, 10.08 \mathrm{mmol}$) in 44% ($0.61 \mathrm{~g}, 2.22 \mathrm{mmol}$) yield.
X-Ray Structure Analysis of Compound ($\left.\mathbf{S}^{*}, \mathrm{~S}^{*}\right)$-3a.-Suitable single crystals of compound $\left(S^{*}, S^{*}\right)-3 \mathrm{c}$ were obtained by recrystallization from EtOAc-hexane. Initial lattice parameters were obtained from least-squares fits to 25 reflections, $20.45<2 \theta<30.18^{\circ}$, accurately centred on a Rigaku AFC5S diffractometer and refined subsequently using higher angle data.

Crystal data for ($\mathrm{S}^{*}, \mathrm{~S}^{*}$)-3a. $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{ClNOP}, M_{\mathrm{r}}=311.79$, orthorhombic space group $P b_{c a}$ (No. 61), $a=17.289(9), b=$ $17.312(7), c=11.915(6) \AA, U=3566(3) \AA^{3}, \quad D_{c}=1.161 \mathrm{~g}$ $\mathrm{cm}^{-3}, \quad Z=8, \quad \lambda(\mathrm{Mo}-\mathrm{K} \alpha)=0.71069 \AA, \quad \mu(\mathrm{Mo}-\mathrm{K} \alpha)=2.97$ cm^{-1}.

Totals of 3844 reflections were collected at $20^{\circ} \mathrm{C}$, using the $\omega-2 \theta$ scan technique to a maximum 2θ value of 55.0°. Data sets were corrected for Lorentz and polarization effects. The structure was solved by direct methods using 767 reflections with $I>3 \sigma(I)$. The final residuals were $R=0.087$ and $R_{\mathrm{w}}=$ 0.095 .
X-Ray Structure Analysis of Compound $\left(\mathrm{S}^{*}, \mathrm{R}^{*}\right)$-3a.-Suitable single crystals of compound $\left(S^{*}, R^{*}\right)-3$ a were obtained by recrystallization from EtOAc-hexane. Initial lattice parameters were obtained from least-squares fits to 25 reflections, $35.29<20<39.07^{\circ}$, accurately centred on a Rigaku AFC5S diffractometer and refined subsequently using higher angle data.

Crystal data for $\left(\mathrm{S}^{*}, \mathrm{R}^{*}\right)$-3a. $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{ClNOP}, M_{\mathrm{r}}=311.79$, monoclinic space group $P 2_{1 / a}$ (No. 14), $a=12.372(4), b=$ $8.760(6), c=16.012(4) \AA, \beta=94.65(2)^{\circ}, \quad U=1730(1) \AA^{3}$, $D_{\mathrm{c}}=1.197 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4, \lambda(\mathrm{Mo}-\mathrm{K} \alpha)=0.71069 \AA, \mu(\mathrm{Mo}-$ $\mathrm{K} \alpha)=3.06 \mathrm{~cm}^{-1}$.
Totals of 4429 and 4240 unique reflections were collected at $20^{\circ} \mathrm{C}$, using the $\omega-2 \theta$ scan technique to a maximum 2θ value of 55.0°. Data sets were corrected for Lorentz and polarization effects. No absorption correction was necessary for this compound. The structure was solved by direct methods using 1714 reflections with $I>3 \sigma(I)$. The final residuals were $R=0.051$ and $R_{\mathrm{w}}=0.072$.

Atomic coordinates, bond lengths and angles, and thermal parameters for compounds $\left(S^{*}, S^{*}\right)$ - and $\left(S^{*}, R^{*}\right)$-3a have been deposited at the Cambridge Crystallographic Data Centre. \dagger

[^1]
References

1 S. Fleming, K. M. Lupton and K. Jekot, Inorg. Chem., 1972, 11, 2534; B. E. Maryanoff and R. O. Hutchins, J. Org. Chem., 1972, 37, 3475. 2 A. H. Cowley and R. A. Kemp, Chem. Rev., 1985, 85, 367; C. W. Schultz and R. W. Parry, Inorg. Chem., 1976, 15, 3046.

3 C. K. SooHoo and S. G. Baxter, J. Am. Chem. Soc., 1983, 105, 7443; A. H. Cowley, R. A. Kemp, J. G. Lasch, N. C. Norman and C. A. Stewart, J. Am. Chem. Soc., 1983, 105, 7444; A. C. Cowley, R. A. Kemp, J. G. Lasch, N. C. Norman, C. A. Stewart, B. R. Whittlesey and T. C. Wright, Inorg. Chem., 1986, 25, 740; A. H. Cowley, C. A. Stewart, B. R. Whittlesey and T. C. Wright, Tetrahedron Lett., 1984, 25, 815; S. A. Weissmann, S. G. Baxter, A. M. Arif and A. H. Cowley, J. Chem. Soc., Chem. Commun., 1986, 1081; S. A. Weissman and S. G. Baxter, Tetrahedron Lett., 1987, 28, 603.

4 M. R. Marre, M. Sanchez and R. Wolf, Phosphorus Sulfur, 1982, 13, 327; M. Sanchez, M. R. Marre, J. F. Brazier, J. Bellan and R. Wolf, Phosphorus Sulfur, 1983, 14, 331; M. R. Mazieres, M. Sanchez, J. Bellan and R. Wolf, Phosphorus Sulfur, 1986, 26, 97; T. C. Kim,
M. R. Mazieres, R. Wolf and M. Sanchez, Tetrahedron Lett., 1990, 31, 4459; C. Roques, M. R. Marieres, J. P. Majoral and M. Sanchez, J. Org. Chem., 1989, 54, 5535.

5 V . Mark, in Mechanisms of Molecular Migrations, ed. B. S. Thagarajan, Interscience, New York, 1969, vol. 2, pp. 319-437; W. D. Huntsman, in The Chemistry of Ketenes, Allenes and Related Compounds, ed. S. Patai, Wiley, Chichester, New York, Brisbane, Toronto, 1980, part 2, pp. 601-603 and references cited therein.

Paper 4/01337I
Received 7th March 1994
Accepted 6th June 1994

[^0]: ${ }^{a}$ Diastereoisomers $\left(S^{*}, S^{*}\right)$ - and $\left(S^{*}, R^{*}\right)$-3a were isolated in 59 and 2% yield, respectively. ${ }^{b}$ Product 3 b was isolated as a diastereoisomeric mixture.
 The ratio of $\left(S^{*}, S^{*}\right):\left(S^{*}, R^{*}\right)$ was about $2: 1$ which was estimated from the doublet signals of the methyne protons in the NMR.

[^1]: \dagger For details of the deposition scheme, see 'Instructions for Authors', J. Chem. Soc., Perkin Trans. I, 1994, Issue 1.

